

Indications for Perimetry

History

3

- General medical problems
- Neurological problems
- Ophthalmic problems
- Potentially toxic medications

Indications for Perimetry

Examination

- Unexplained reduction in best corrected visual acuity
- Defect noted on confrontation fields
- Abnormal pupils or EOM's
- Proptosis
- Elevated intraocular
- pressure

Monocular limits of the visual field		
Direction	Limit	Anatomy
Superior	60*	Frontal orbit (brow)
Nasal	60*	Nose
Inferior	70*	Maxilla (cheek)
Temporal	110*	Nasal retina

Factors influencing visual field measurements RESPONSE FACTORS

- Patient instructions
- Patient's expectations
- Examiner's personality

Response criterion

- The patient's willingness to say "yes" when a target is presented
 - Strict criterion higher threshold
 - Relaxed criterion lower threshold

Reaction time

In general, the more peripheral the stimulus, the longer the reaction time

Using an automated perimeter

Screening tests

- Used for <u>detection</u> of a defect
- Major advantage is speed of test
- Disadvantages includes having limited data for
- quantification (not as accurate)
 Threshold tests
 - Allows for <u>assessment</u> of defects
 - Test takes longer than screening test
 - More accurate than screening test

Perimetry Compensation Lenses

- The patient's habitual nearpoint correction <u>is not suitable</u> for perimetry because:
 - It is set for a different distance (ie., 40cm vs. 33cm)
 - It is usually in the form of a multifocal which would be useful
- only for the inferior fields

 Trial lenses used instead of glasses
- Contact lenses should be removed
- for testing, as tear film deficiencies and dryness can affect results of test

Perimetry Compensation Lenses

The compensation lens can be manually determined and entered into the HFA II (II-i), or you can have the the machine determine the compensation lens for you (based on patient's distance Rx and date of birth)

Perimetry Compensation Lenses

- The trial lens power you use depends on the accommodative status of the patient:
 - 1. Absolute presbyope (or cyclopleged patient)
 - 2. Intermediate presbyope
 - 3. Non presbyope

Perimetry Compensation Lenses

Absolute Presbyope (or cyclopleged patient)
 Add +3.00 sphere to the distance correction

Example: Distance Rx: -1.75 -1.25 x 086 Trial Lens: +1.25 -1.25 x 086

Perimetry Compensation Lenses

Intermediate Presbyope

The rule-of-thumb is to add +0.50 sphere to their habitual add

Example:

Distance Rx: +2.75 -2.25 x 107 Add: +1.25

Trial Lens: +4.50 -2.25 x 107

Perimetry Compensation Lenses

Non-Presbyope

Usually, you can use their customary distance Rx in the trial lens

Example:

Distance Rx: -3.75 -1.50 x 172 Trial Lens: -3.75 -1.50 x 172

Perimetry Compensation Lenses

- Cylinder power
 - If the cylinder power is greater than 1.00D, correct all of the cylinder
 - If the cylinder power is 1.00D or less, use the equivalent sphere
 - □ If cylinder is used, place it in the lens well closest to the patient's eye

Perimetry Compensation Lenses

- An improperly positioned trial lens will produce a <u>ring scotoma</u>
- Using the wrong prescription can result in a <u>central scotoma</u> or <u>depression</u> of the visual field
- The bottom line is:
- Always ask the patient if their fixation target is clear before proceeding with the test!

- the testing and improve accuracy Tell them to inform you if they need to pause the test at any
- I lell them to inform you it they need to pause the test at any time

Patterns of threshold testing, cont.

Central 24-2

- Covers central 24° (except nasally where it extends out to 30°) ; 54 points with 6° between points
- Takes less time than Central 30-2
- Central 10-2
 - \blacksquare 10°; 68 points with 2° between points
 - Most often used on patients with conditions that affect central vision (ie., macular degeneration, diabetic retinopathy) or when only a small amount of central vision remains (ie, end-stage glaucoma)
 - Also useful as a screener for potentially toxic medications (ie, Plaquenil)

Patterns of screening testing

C-76 Screener

- Screens the central 30°
- Uses exact test point pattern as the 30-2
- Full field 81/120
- Custom

Start Screen

- Eye monitor used for initial setup and to confirm proper position and fixation throughout the test
- Reliability indicators
 False negative
- Fixation losses –
- False positives

Reliability Indicators

False Negative

- A catch trial that indicates the patient is not responding to stimuli that were previously seen
- Likely indicates that the patient is becoming fatigued or is inattentive and should be re-instructed and encouraged
 - The pause control can be used to give the patient a rest
- May also be high in a reliable patient with significant field loss

Reliability Indicators

Fixation Losses

- When the test begins, the machine "locates" the blind spot by an initialization process
- During testing, presentations of stimuli are presented in the position of the blind spot, and a fixation loss is assumed if the patient responds
- Fixation losses are presented as a fraction with the numerator representing the number of losses and the denominator representing the number of presentations
 - If a patient appears to have >33% fixation losses, it is probably worth it to pause the test and reinstruct the patient towards the fixation target

Reliability Indicators

False Positives

- False positives are not shown on the SITA screen (you will need to monitor the decibel graph to catch high false positives)
- False positives are determined by using periods during the test when no positive answers are expected (ie, "trigger happy")
 - Instruct the patient to respond only when a stimulus is seen and that he/she may not be able to see all of the stimuli that are presented

Fixation Monitoring

The following are used on the Humphrey Field unit to assist in monitoring fixation and in gauging patient reliability:

- direct video observation of the patient's eye
- blind spot stimulus presentations
- gaze tracking

OOPS!!

Common mistakes in administering the visual field test.....

- **No patch** no blindspot and the periphery is unusually large
- Wrong trial lens Rx generalized depression in central 30 degrees of visual field
- Incorrect placement of trial lens ring scotoma
- Patient fatigue inconsistent responses, high false negatives and fixation losses, superior visual field loss
- Ptosis, dermatochalasis superior visual field loss

□ Keep in mind, this is <u>not</u> a speed test!!