Specialty Lens Fitting

Daniel G. Fuller, OD, FAAO (Dipl), FSLS

Financial Disclosures

• Educational travel grants from
 • Alcon
 • B+L
 • Cooper Vision
 • JJV

Affiliations

• Chief, Cornea Contact Lens Service, TEC, SCO
• Founding Supervisor, Cornea Contact Lens Refractive Surgery Residency, SCO and ESG
• Chair, Public Education Committee Scleral Lens Education Society
• Candidate, Diplomate Cornea Contact Lens Refractive Surgery, AAO

Objectives

• Increase awareness of indications for specialty contact lenses
• Develop a methodical approach to selecting lens designs
• Discuss fitting considerations in complex cases
• Diagnose and manage associated complications
What constitutes a specialty lens?

- Underlying cornea
- Purpose of the lens
- Lack of familiarity with design

Common Indications for Specialty Designs

Abnormal corneas
- Corneal ectasia
- Post-surgical
- Ocular surface disease
- Complications of systemic disease
- Post-infection or trauma
- Prosthetics

Normal corneas
- Myopia control
- Torics
- Multifocals
- Anisometropia correction

Recent Survey from Contact Lens Spectrum

2. If you answered yes, what specialty custom contact lenses do you prescribe? Please check all that apply.
- Custom soft multifocal or toric contact lenses
- Gas permeable (rigid) multifocal or toric contact lenses
- Scleral contact lenses for irregular or normal corneas
- Scleral contact lenses for dry eye patients
- Contact lenses for orthokeratology (corneal reshaping)
- Contact lenses for myopia control (multifocal or orthokeratology contact lenses)
Common Indications for Specialty Designs

- Ocular surface disease
 - K.sicca
 - Sjogren’s
 - Rheumatological disorders
 - Thyroid dysfunction
 - GVHD
 - Limbal stem cell deficiency (LSD)
 - Preservative toxicity

Common Indications for Specialty Designs

- Complications of systemic dz
 - Steven’s-Johnson
 - Cicatricial pemphigoid
- Post-infection or trauma
 - Neurotrophic keratitis
 - Persistent epithelial defects
 - Any cause of corneal scarring

Common Indications for Specialty Designs

- Prosthetics
 - Tints
 - Artificial apertures
- Myopia control
 - Bifocal or dual focus designs
 - Overnight orthokeratology

Design Selection: A Systematic Approach – Know your destination
Rehabilitation Goals

- **Preservation of function**
 - Improve vision
 - Return to productive life
 - Work
 - Family
 - Reduce depression or anxiety

- **Palliative management**
 - Vision improvement less likely
 - Improve comfort
 - Stabilize tear film
 - Stabilize disease process
 - Prevent further scarring

Interprofessional Care & Communication

- Clearly understand each provider’s role
- Sub-Specialties in Medicine
 - Cornea
 - Retina
 - Glaucoma
 - PCP
 - Internist
 - Endocrinologist
 - Rheumatologist
- Optometrists
 - Primary
 - Secondary
 - Low Vision
 - Rehabilitation
 - Vision Therapy
- Others
 - Social workers
 - Occupational therapists
 - Disability counselors

Essential Equipment – Ridiculous to Sublime

- $30K
- $5K
- $19K
- $30K
- $100K

OK… Now I am just bragging….
Measurement of Corneal Shape

• Keratometry / Auto-Keratometry—Curvature data
 • Reflected mires
 • Central 3mm
 • Quality of mire patterns

Essential Equipment

Fuller 2019, COPE #59312-CL

Measurement of Corneal Shape

• Topography – Curvature data
 • Placido’s disk – dependent on reflection
 • References btw. fixation target and center of ring pattern on the eye (VK axis) which should coincide with line of sight
 • Calculated height data
 • Covers 6mm (10mm chord with composite images)

Measurement of Corneal Shape

• Tomography
 • Ant. Seg. OCT
 • Scheimpflug
 • Not dependent of reflection
 • True height data & more
 • Not referenced to axis of device
 • 18mm to 20mm chord
Measurement of Corneal Shape

- Variety of measures
 - Profilimetry – true height data (sMap3D & Eaglet Eye Surface Profiler)
 - Fluorescence based structured light topographer
 - 20mm to 22mm range and 360° scleral coverage
 - True height data

Interpreting the data

- **Axial (Sagittal) Maps**
 - Values are referenced to the central keratoscopic axis
 - Represents best the optical characteristics of the eye
 - Can compare btw. pts. makes it useful in refractive surgery

Interpreting the data

- **Tangential (Instantaneous) Maps**
 - Curvature relative to a particular point not a central axis
 - More detailed curvature representation, esp. in periphery
 - More useful in CL fitting

Interpreting the data

- **Refractive Power Maps**
 - True refractive power of the cornea in Diopters
Interpreting the data

- **Elevation Map**
 - Referenced to a BFS
 - Used to simulate fluorescein patterns under a rigid CL
- **Height Map**
 - Dist. along the axis of the eye to the surface in microns
 - Visualize corneal shape
 - Critical to fitting CL's

Interpreting the data

- **Difference Map** – assess change over time

Interpreting the data

- **Scales**
 - Absolute (Standard) – scale to all eyes
 - Compare btw.Pts.
 - Relative (Normalized) – scale to that eye
 - More detail
 - More useful for CL fitting
 - Universal Standard Scale (Smolek, 2002)

Indicies

- **SRAX** – couples IS with axis. If axis is more than 2° different it is suspect
- **IS** – Inferior/Superior asymmetry index is the difference btw. averages
 - Moderate 1.4D to 1.9D
 - Suspect >1.9D
- **SAI** – surface asymmetry index is the centrally weighted ave. btw. corresponding pts. 180° apart
- **SRI** – surface regularity index within 4.0mm pupil
 - <1.0 normal
 - Correlates with VA
Shape Descriptors

- **e (Eccentricity)** –
 - Circle: 0
 - Ellipse: 1
 - Cannot differentiate prolate from oblate
 - >0.8 is likely keratoconus
 - Normal: 0.43 (range 0.40 to 0.57)
- **p-value**
 - Circle: 1
 - Ellipse: 0
 - Prolate: <1
 - Oblate: >1
- **Q (Asphericity) – (Q = p-1)**
 - Prolate is negative
 - Sphere: 0
 - Oblate is positive

Prolate v. Oblate Shapes

- Severe Keratoconus
- PK #3 Chronic GVHD

Regular v. Irregular Corneas

- Normal WTR Astig. (-2.20x017)
- Post PK Irregular Astigmatism

Not Always Clear Cut
Grading Severity e.g. Keratoconus

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
<th>Required Features</th>
<th>ACP</th>
<th>RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Normal</td>
<td>No corneal scarring; No slit lamp findings; Typical axial pattern <47.75D</td>
<td><0.65</td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td>Atypical</td>
<td>No corneal scarring; No slit lamp findings; Atypical axial pattern/Irregular/Asymmetric superior bowtie/Asymmetric inferior bowtie/Inf or Sup steepening no more than 3.00D > than ACP</td>
<td><48.00D</td>
<td><1.00</td>
</tr>
<tr>
<td>2</td>
<td>Suspect</td>
<td>No corneal scarring; No slit lamp findings; Axial pattern with isolated area of steepening; Inf seteep pattern/Sup steep pattern/Central steep</td>
<td><49.00D</td>
<td>>1.00 but <1.50</td>
</tr>
<tr>
<td>3</td>
<td>Mild</td>
<td>Axial pattern consistent with KCN; May have positive slit lamp findings; No corneal scarring</td>
<td><52.00D</td>
<td>>1.50 but <3.50</td>
</tr>
<tr>
<td>4</td>
<td>Moderate</td>
<td>Axial pattern consistent with KCN; Must have positive slit lamp signs; Corneal scarring and overall CLEK grade up to 3.00D</td>
<td>>52.00 but <56.00</td>
<td>>3.50 but <5.75</td>
</tr>
<tr>
<td>5</td>
<td>Severe</td>
<td>Axial pattern consistent with KCN; Must have positive slit lamp signs; Corneal scarring >CLEK grade 3.5</td>
<td>>56.00D</td>
<td>>5.75</td>
</tr>
</tbody>
</table>

McMahan TT et al. Cornea 2006;25:794–800

Not Always Clear Cut

Corneal Center v. Apex

Soft Lens Designs for Irregular Corneas

- **Indications**
 - Keratoconus
 - Post-op PRK/LASIK/RK/PK/ICRS
- **Pros**
 - +20.00D and Astigmatic options to -12.00 at 1º
 - Handling
 - Comfort
 - Care
- **Cons**
 - Thicker lens = hypoxia (Dk/t)
 - More HOAs due to draping
 - Conventional replacement
 - Peroxide best option
 - May need enzyme
Soft Lens Designs for Irregular Corneas

- Tips for fitting
 - Transition soft to rigid or large asymmetry in KCN
 - Coverage with equal overlap (centration)
 - Move enough to produce tear exchange (+ push up test)
 - Consider over-K's/-topos
 - Aberration control on front (asph.)
 - BST

Rigid Lens Designs for Irregular Corneas

- Indications
 - Keratoconus
 - Post-op PRK/LASIK/RK/PK/ICRS

- Pro’s
 - Corrects HOA’s better
 - More stable VA
 - Less hypoxia
 - Corrects irregular cylinder

- Con’s
 - Comfort +/-
 - Condition may limit diameter
 - Flare, glare and halos
 - Staining

Soft Lens Complications

- Contact Lens papillary conjunctivitis (CLPC)
- Deposits
- Lens damage
- Neovascularization
 - Hypoxia risks (open-eye)
 - Holden-Mertz criteria $Dk/t = 24$
 - Harvitt-Bonnano criteria $Dk/t = 35$
 - G-H junctions, RK with NVZ
 - Endothelial health?
 - Superior arcuate defects (SEAL) & Smile Mucin balls

Rigid Lens Designs for Irregular Corneas

- Designs
 - Spheres
 - Aspheric
 - Improves centration
 - BC v. PC’s
 - Small (8.5-8.8mm)
 - Large diameters (10.0-11.0mm)
 - Adjustable edges and quadrants

- Torics
 - Not commonly used due to irregular cylinder
 - May only have toric peripheral curves on some aspheric designs
Rigid Lens Designs for Irregular Corneas

- Tips for fitting
 - Keys to centration
 - Central apex – small diameters, intrapalpebral
 - Para-central and peripheral apex – large diameters, lid-attached
 - Judge fit on center not where it decenters
 - Adjust PC’s to keep it centered
 - Three-point touch is best

Rigid Lens Complications

- 3-9 staining – approx. 80% (van der Worp, 2003; Fonn, 2010)
 - Bridge v. meniscus theory
 - Intrapalperbral – goal is to align curves with cornea (asph)
 - Lid-attached – keep lenses thin if using a larger diameter
 - Solution-induce corneal staining (SICS) (Fonn, 2010)
 - Unique to lens-solution combination
 - 50:50 association with sx
 - Adhesion

Rigid Lens Complications

- Vascularized Limbal Keratitis
 - Extension of 3-9 staining
 - Dellen
 - Change diameters
 - Lower edge clearances
 - Lubricants

- Materials
 - Silicone acrylates
 - Fluoro-silicone acrylates
 - Flexure – over-K’s/-topos
 - Deposits
Piggy-backing

• Indications
 • Intolerance of rigid lens
 • Central, para-central and peripheral apices
 • Lens ejection

• Pro’s
 • Improve comfort
 • Improve centration
 • Optics possibly better (Kumar, 2016)

• Con’s
 • Two lenses require more care
 • Lowers Dk/t (Michaud, 2012; Florkey, 2007; O’Donnel, 2004)

Tips for fitting

• Use high Dk carrier and GP
• Assess fit with fluorescein
• Staining of the trial (high MW or not)
• Soft lens fit
• GP fit
• Centration of both lenses is key
• Consider specialty carriers (e.g. Flexlens piggyback, Xcel Specialty Contacts)
• Soft lens contributes on 20% to power; plus v. minus (Michaud, 2013; Romero-Jiménez, 2015)

Complications (Yeung, 1995)

• Corneal edema
• Neovascularization
• CLPC
• Overall, very safe and efficacious

Hybrids

• Indications
 • Intolerance of rigid lens
 • Central, para-central and peripheral apices
 • Lens ejection

• Pro’s
 • Improve comfort & centration over GP but similar to PB (Acar, 2012)
 • Dk/t optimal at 100µ vault (Lee, 2015)
 • Single lens system
 • Reverse geometry designs

• Con’s
 • Bi-annual replacement
 • No torics
 • Durability issues much improved
 • Handling challenging with HydraPEG
Hybrids

• Indications
 - Intolerance of rigid lens (Nau, 2012)
 - Central, para-central and peripheral apices – centration (Guzik, 2002)
 - VLK (Cressy, 2012)
• Pro’s
 - 79.5% of subjects (N=54) with intolerance to their rigid lenses preferred comfort of hybrid (Nau, 2008)
• Outcomes may be similar to PB (Nau, 2009)
• VA’s may be same or better than GP with improved quality of life (Nau, 2012; Pinero, 2015; Hassani, 2015)

<table>
<thead>
<tr>
<th>Indication</th>
<th>% of Sample (N=79 eyes/54 pts.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keratoconus</td>
<td>57%</td>
</tr>
<tr>
<td>PK</td>
<td>15%</td>
</tr>
<tr>
<td>Scarring</td>
<td>1%</td>
</tr>
<tr>
<td>Globe rupture/trauma</td>
<td>6%</td>
</tr>
<tr>
<td>RK-induced ectasia</td>
<td>5%</td>
</tr>
<tr>
<td>LASK-induced ectasia</td>
<td>4%</td>
</tr>
<tr>
<td>PMD</td>
<td>2%</td>
</tr>
<tr>
<td>High astigmatism</td>
<td>2%</td>
</tr>
<tr>
<td>DSEK</td>
<td>1%</td>
</tr>
<tr>
<td>Alpha Cor Prosthesis</td>
<td>1%</td>
</tr>
</tbody>
</table>

Hybrids

• Pro’s (cont.)
 - Dk/t improved over PB
 - Single lens system
 - Reverse geometry designs
• Con’s
 - Bi-annual replacement
 - No torics
• Fitting tips (Lee, 2015; Downie, 2013)
 - Optimal vault increases with apical height (range 100µ-300µ); varies by design
 - Fit steeper avoids lens tightening
 - More eccentric apices correlated with steeper skirts

Scleral Contact Lenses

• Indications (Bennett, 2018)
 - When all else fails & normal corneas?
 - Moderate to severe presentations of the aforementioned conditions
 - Fails at other options/intolerance
 - Some insights do exist

[Images and tables are replaced with text descriptions due to the nature of the task.]
Scleral Contact Lenses

Pro's (Bennett, 2018; Barnett & Johns, 2017)
- Comfort
- Tear reservoir as a liquid bandage
- Precise control of curvatures
- Customization

Con's (Bennett, 2018; Barnett & Johns, 2017)
- Steeper learning curve
- More visits required
- Expense +/-
- Handling

17 yo progressed to PK within 12mos. (20/20 s/p)

Still wearing Oasys toric (20/20)
Scleral Contact Lenses

• Fitting tips
 • Diameter – No consensus [Bergmanson, 2017]
 • Anatomical limbus is approx. 1.2mm > HVID or ≥14.0mm in the average eye
 • >16.0mm suggested
 • Clear the limbus
 • Look for diffusion outside limbus without touch in midperiphery
 • Double check with AS OCT (Hall, 2011)
 • Larger diameter clears limbus more and increases sag

Scleral Contact Lenses

• Fitting tips (cont)
 • Larger diam. rests on increasingly asymmetric sclera
 [Fadel, 2018; Macedo-de-Araújo, 2018; deNaeyer, 2017]
 • Toric PC’s may be required
 • Flexure offset as diam. inc. by inc. in CT (Fadel, 2017)
 • Sclera higher and flatter N side
 [Ritzman, 2015; Morrison, 2015]
 • Avoid obstacles

Scleral Contact Lenses

• Sagittal depth v. BC [Andre, 2011]
 • Sagittal depth varies with chord; Better predictor of fit
 • Determines reservoir thickness;
 • Dk/t [Kim, 2018; Essen, 2017; Gascon, 2017; Compan, 2018; Viven, 2016; Jayme, 2015; Michaud, 2012]
 • Suggested CT - 250microns, 200microns CCC, 150 Dk;
 • Others suggest 200-300microns CCC with 100microns LZC; [Gascon, 2017]
 • Oblate and RG designs reduce CCC. RK patients may have moderate (+) Rx with thicker centers
 • Optics of sag do not follow SAMFAP

Scleral Contact Lenses

• Lens settling [Kim, 2018; Essen, 2017; Gascon, 2017; Compan, 2018; Viven, 2016; Michaud, 2012; Jayme, 2015; Stoffman, 2014; Caroline, 2015; Fuller, 2014]
 • No agreement; small studies; limited lens designs
 • Maybe smaller settle more if you believe P=F/A
 • Non-linear, most occurs in first few hours but can continue for many hours
 • Lens & eye dependent
 • Relates to impingement and compression
Scleral Contact Lenses

• Complications
 - N=517 eyes wearing low Dk ScCL (primarily PMMA) btw. 1988 and 1993 (Tan, 1995)
 - neovascularization (13.3%)
 - corneal edema (7.4%) secondary to corneal hypoxia
 - corneal abrasion (3.1%)
 - giant papillary conjunctivitis (1.7%)

Scleral Contact Lenses

• No contemporary prospective studies (Walker, 2015)
 - MK (same as GP?)
 - Inflammatory events
 - Hypoxia

Scleral Contact Lenses

• No contemporary prospective studies (Walker, 2015)
 - Conjunctival prolapse
 - Limbal bearing

Scleral Contact Lenses

• No contemporary prospective studies (Walker, 2015)
 - Epithelial bogging
 - Solution reactions
Scleral Contact Lenses

- No contemporary prospective studies (Walker, 2015)
- Mid-day fogging

Thank you!